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Abstract

Buckminsterfullerene C60 and derivatives have been extensively explored in biomedical
research due to their unique structure and unparalleled physicochemical properties. C60 is
characterized as a ‘‘free radical sponge’’ with an anti-oxidant efficacy several hundred-fold
higher than conventional anti-oxidants. Also, the C60 core has a strong electron-attracting
ability and numerous functional compounds with widely different properties can be added
to this fullerene cage. This review focused on the applications of C60 and derivatives
in orthopaedic research, such as the treatment of cartilage degeneration, bone destruction,
intervertebral disc degeneration (IVDD), vertebral bone marrow disorder, radiculopathy, etc., as
well as their toxicity in vitro and in vivo. We suggest that C60 and derivatives, especially the C60

cores coupled with functional groups presenting new biological and pharmacological activities,
are advantageous in orthopaedic research and will be promising in clinical performance for
musculoskeletal disorders treatment; however, the pharmacokinetics and toxicology of these
agents as local/systemic administration need to be carefully determined.
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Introduction

Fullerenes (Cx), the third carbon allotrope, are similar in

structure to graphene but rolled up to form hollow spheres

with closed structure (1). In fullerene family, buckminster-

fullerene C60 is the most abundant representative which was

first discovered by Kroto et al. in 1985 through graphite

vaporization under laser irradiation (2). Since its detection

and bulk production, C60 has elicited intense interest on

scientific scene due to its unique structure and features, which

culminated in the 1996 Nobel Prize for Chemistry awarded to

Kroto, Curl and Smalley for their seminal discovery. C60 is a

remarkably stable compound composed of 60 carbon atoms

arranged in a ‘‘soccer cage’’, with a diameter of 0.72 nm

(Figure 1) (3). Its highly delocalized � double bond system

contributes to an unusual redox chemistry. Thus, C60 has been

characterized as a ‘‘free radical sponge’’ with an anti-oxidant

efficacy several hundred-fold higher than conventional anti-

oxidants (4). Also, C60 consists entirely of sp2-hybridized

carbons which render it a strong electron-attracting ability (5).

Therefore, numerous functional compounds with widely

different properties can be added to the fullerene cage.

For example, the pristine C60 is highly hydrophobic. Covalent

attachment of hydroxyl (–OH), amino (–NH2) or carboxyl

(–COOH) groups, enables it to be water-soluble (6) and

facilitates its in-depth biomedical applications in vitro and

in vivo. Herein, we will briefly review the unique features

of C60 and derivatives, as well as the current advances of their

biomedical applications, especially in orthopaedic research.

Oxidative stress in pathology and redox
properties of C60 and derivatives

The endogenous production of reactive oxygen species

(ROS), such as superoxide anion, hydroxyl radical and

hydrogen peroxide, is a consequence of basal cellular

respiration, processed from mitochondrial oxidative phos-

phorylation (7). At a moderate level, ROS are recognized

to be physically involved in cell signaling and required for

biochemical energetics of life. When ROS overwhelm the

cellular anti-oxidant defense system, oxidative stress would

occur and cause damage to cellular proteins, lipids and

nucleic acids (8), potentially implicated in the pathogenesis of

atherosclerosis (9), neurodegeneration (10), cancer (11) and

musculoskeletal disorders (12,13). Therefore, it is of thera-

peutic value to relieve the oxidative stress by removing excess

ROS with extrinsic anti-oxidants, toward the goal to remedy

the stressful pathological conditions.

The novel free radical scavenging property of C60 is

attributed to its unique hollow spherical structure featured

with 30 conjugated carbon–carbon double bonds and

low lying lowest unoccupied molecular orbital (14). It was
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reported that one C60 molecule can readily react with at least

15 benzyl radicals or 34 methyl radicals to form stable radical

or non-radical adducts (4). Furthermore, as the quenching

process is catalytic, C60 can react with many superoxides

without being consumed. Thus, C60 has been considered as

a ‘‘free radical sponge’’ and described to be the most

efficient radical scavenger (4). Figure 2 shows the possible

mechanisms under which C60 acts as an efficient free radical

scavenger (15–18). To improve its hydrophilicity and increase

its versatility, extensive studies have been focusing on the

development of water-soluble C60 derivatives and the attach-

ment of functional groups presenting new biological and

pharmacological activities to the C60 anti-oxidant core.

General applications of C60 and derivatives
in biomedical research

C60 and derivatives were found to be beneficial in many

biomedical applications due to the unique anti-oxidant

features and various functionalizations of the C60 core:

(1) Inflammation suppression: Fullerol, a polyhydroxylated

derivative of C60, and C60 hybrids bearing xanthine or

thalidomide moiety suppressed nitric oxide (NO) and tumor

necrosis factor-a (TNF-a) production of macrophages under

lipopolysaccharide (LPS) activation and attenuated neutro-

philic lung inflammation induced by quartz via eliminating

oxidative stress as well as through the therapeutic actions

of the linked drug groups (19–21). (2) Neuroprotection:

C60, fullerol and carboxyfullerene prevented neurons from

excitotoxic and apoptotic injuries in vitro and in vivo,

prevented transgenic neurodegenerative disorder as well

as ischemia or iron-induced oxidative injuries in brain

tissue, by scavenging free radicals (22–26). (3) Protection

of visceral organs from oxidative injuries: C60, fullerol and

hexa(sulfobutyl)fullerene protected visceral organs, such as

liver, heart, lung, kidney, etc., from oxidative injuries via

scavenging free radicals (27–29). (4) Inhibition of cellu-

lar apoptosis: Functionalized C60 derivatives, such as

glutathione C60, carboxyfullerene, hexa(sulfobutyl)fullerene,

C3-fullero-tris-methanodicarboxylic acid, efficiently inhibited

cellular apoptosis by suppressing oxidative stress (30–34).

(5) Radioprotection: Fullerol and dendro[C60]fullerene

showed radioprotection of cells, tissues, and organs from

free radical damage generated by ionizing radiation (35–38).

(6) Inhibition of enzyme activities: Fullerol, trimalonic acid

C60, tris-malonyl-C60 and C60O5(OH)18 inhibited activities of

Thermus aquaticus (Taq) DNA polymerase, NO synthase and

monooxygenase, due to the high hydrophobicity and electro-

philicity of the C60 core, as well as through the incorporation

of C60 nanoparticles into the catalytic pockets and the actions

of the conjugated enzyme inhibitory groups via surface

modification (39–41). (7) Photodynamic therapy: C60, C60

linked with pyrrolidinium groups, C60 modified with

l-phenylalanine, folic acid and l-arginine, and hexakis C60

showed inactivating effects on tumor (42–44), microbial

(45,46) and viruses (47,48), by generating ROS upon

illumination through photodynamic therapy strategy, working

as photosensitizers. (8) Drug and gene delivery: Surface

modifications of the C60 core to be conjugated with drugs,

such as C60-paclitaxel and C60-PEI-FA/DTX, or functionali-

zations with DNA-binding groups, such as amino (seri, C3)-

C60 adducts and tetra-amino C60, were explored and proved

Figure 1. The structure of buckminsterfuller-
ene C60.

Figure 2. Possible mechanisms under which C60 acts as an efficient
free radical scavenger. C60 removes free radicals potentially by direct
quenching of NO, neutralization of singlet oxygen, enzyme-like
dismutation of superoxide radicals, as well as trapping and inactivation
of hydroxyl radicals.
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to be promising for drug and gene delivery (49–52). (9)

Cellular imaging and biodistribution detection: Gadolinium

(Ga), holmium (166Ho) and technetium (99mTc) ions were

trapped in fullerene cages and investigated in the applications

of cellular imaging and biodistribution detection (53–56).

These findings exhibited promising features of C60 and

derivatives and warrant their further beneficial applications

in orthopaedic research.

Applications of C60 and derivatives in
orthopaedic research

C60 and derivatives in cartilage degeneration
treatment

How to improve the recruitment of chondrocytes derived from

progenitor cells is always a big challenge in cartilage

degeneration therapy regarding the loss of functional chon-

drocytes. Tsuchiya et al. (57) were the first group to explore

the influence of C60 on cellular chondrogenic differentiation.

In a micromass culture model in vitro, they found that water-

soluble C60 strongly promoted the chondrogenesis of primary

embryonic limb bud cells in proportion to the compound

concentrations with alcian blue staining. Since it was reported

that the enzymes responsible for chondroitin sulfate synthesis

are concentrated in both rough and smooth endoplasmic

reticulum (58), and C60 was documented to be incorporated

into lipid membranes (59), also, highly charged polyanionic

substances markedly stimulated the synthesis of proteoglycan

(60), the authors proposed two possible mechanisms for their

findings: in cellular reticulum, (1) C60 works as polyanionic

substance featured with the �-electron-rich surface in itself;

(2) C60 concentrates the polyanionic substances such as

chondroitin sulfate and the polyanionic substances promote

the synthesis of proteoglycan. However, the authors did not

discuss the anti-oxidant property of C60 which may potentially

function as another mechanism to enhance cellular chondro-

genic differentiation.

The further application of C60 to prevent cartilage

degeneration was explored by a Japanese group (12). In the

in vitro study, it was shown that under interleukin-1 b (IL-1 b)

or H2O2 induction, water-soluble C60 down-regulated cellular

production of matrix-degrading enzymes in chondrocytes

from patients with osteoarthritis. At the same time, C60

dramatically enhanced the biosynthesis of proteoglycan and

collagen type II, as well as decreased cellular apoptosis and

senescence under catabolic stress. In the in vivo study, they

found that intra-articular administration of C60 prevented the

progression of cartilage degeneration in an osteoarthritis

rabbit model with a dose-dependent manner. The protective

effects of C60 were potentially attributed to its free radical

scavenging property. As has been documented the induced

production of ROS is associated with inflammation in

varieties of cells (61–63). ROS can also lead to a

proinflammatory state and an imbalance of catabolic and

anabolic activities in articular cartilage. Since under certain

pathological conditions, endogenous anti-oxidants are not

sufficient to inactivate excess free radicals (64), it is a novel

strategy to suppress the inflammation with administration

of extrinsic anti-oxidants, such as C60. Also, the authors

suggested that the injected C60 worked as a ‘‘molecular

bearing’’ with superlubricity (65) to coat, lubricate and

protect the joint cartilage function. Therefore, administration

of C60 might have a distinct therapeutic value as a strategy

to prevent cartilage degeneration.

The strategy to treat cartilage degeneration with C60

and derivatives is shown in Figure 3.

C60 and derivatives in bone destruction therapy

The use of glucosteroid has been shown to have some side

effects on osteonecrosis and bone loss in which progression

oxidative stress is implicated. Inhibiting the stress may be a

promising strategy to solve this issue. It was shown that

administration of an anti-oxidant vitamin E decreased the

incidence of corticosteroid-induced osteonecrosis in a rabbit

model (66). Liu et al. (67) went further in this field with

the application of a more stable anti-oxidant fullerol. Their

in vitro study showed that fullerol nanoparticles inhibited

adipogenesis and simultaneously enhanced osteogenesis in a

bone marrow mesenchymal stem cell line under dexametha-

sone induction. Further in vivo studies are needed to confirm

the osteogenesis-enhancing potentials of fullerol as a thera-

peutic agent for glucosteroid-induced osteonecrosis treatment.

The hyper-resorption of bone by osteoclasts is another

reason for bone destruction. Yudoh et al. (13) found that

water-soluble C60 prohibited the differentiation of precursor

cells into osteoclasts and osteoclastic resorption in vitro

through inhibition of receptor activator of NFkB (RANK)-

RANK ligand (RANKL) signaling pathway by direct removal

of ROS as well as suppressing the production of proin-

flammatory cytokines. Furthermore, in their adjuvant-induced

arthritic bone resorption rat model, intra-articular injection

of C60 significantly inhibited local inflammation and joint

destruction. Therefore, C60 showed another novel feature from

the other side to prevent bone destruction by osteoclastic

suppression and inflammation inhibition.

Figure 4 shows the strategy to treat bone destruction

with C60 and derivatives by both promoting osteogenesis and

suppressing osteoclastogenesis.

Figure 3. The strategy to treat cartilage degeneration with C60 and
derivatives. C60 and derivatives enhance cellular chondrogenesis work-
ing as polyanionic substances and polyanionic substance concentrators,
suppress cartilage inflammation by scavenging free radicals, and
promote joint lubricity as a ‘‘molecular bearing’’.
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Osteoporosis is a systemic skeletal disorder characterized

by reduced bone mineral density, microarchitectural deteri-

oration of the skeleton and increased risk of fracture (68).

The traditional agents for osteoporosis treatment, such as

bisphosphonate drugs and fluorine anion (NaF), are either

not efficiently absorbed in the gastrointestinal tract or fairly

toxic, if orally administered (6). Thus, the vectored pharma-

ceuticals targeted at destructive bone tissue may be promising

in this field. As has been reported, functionalized with

diphosphonate groups or amide bisphosphonate and multiple

hydroxyl groups, the C60 derivatives C60[C(PO3H2)2]2 (69)

and C60(OH)16AMBP (70) conferred a strong affinity to

the calcium phosphate mineral hydroxyapatite of bone.

Therefore, the C60-based bone tissue targeted compound

cores demonstrated a promising prospect to be conjugated

with traditional bone promotion agents for osteoporosis

treatment.

C60 and derivatives in IVDD therapy

Symptomatic IVDD is strongly implicated as a cause of low

back pain (71,72), which is one of the most common clinical

conditions associated with musculoskeletal disorders, result-

ing in tremendous socioeconomic burden (73,74). There is

growing evidence indicating that mitochondrial-derived

ROS play a causal role in driving changes linked to IVDD.

The oxidative stress caused damage accumulates in degen-

erative discs. Free radical scavengers have been shown to

play a potentially important role in preventing IVDD (75).

Also, the degenerative discs exhibit higher proinflammatory

cytokine levels (e.g. TNF-a, IL-1 b, IL-6, IL-8, IL-12, IL-17

and others) versus non-degenerative discs (76–78).

Suppression of disc tissue inflammation is another strategy

to prevent IVDD. C60 and derivatives may be recruited in this

strategy due to their anti-oxidant and anti-inflammatory

features. Recently, we performed a pilot study to investigate

the therapeutic effects of fullerol on nucleus pulpsus

(NP) cells under inflammatory induction and annulus

fibrosus puncture-induced disc degeneration in a rabbit

model (manuscript under review). We found that fullerol

effectively reversed the matrix degradation of NP cells

under either H2O2 or IL-1 b induction, and the intradiscal

injection of fullerol prevented IVDD by increasing water and

proteoglycan content as well as by inhibiting ectopic bone

formation.

C60 and derivatives in vertebral bone marrow fatty
degeneration and inflammatory edema treatment

As disc has a very close relationship with vertebral bone

marrow and they are separated by a thin layer of endplate

(79), IVDD is associated with the lesions of vertebral bone

marrow as well. Fatty marrow replacement and inflammatory

edema in IVDD can be detected by MRI with Modic Type II

changes (80). Also, mature discs almost totally rely on

diffusion of essential solutes through the marrow contact

channels in the vertebral endplate for nutrition and metabolic

exchange (79,81). The focal fatty marrow conversion from

normal red hemopoietic bone marrow (82) might obstruct the

nutrient transport from bone marrow to endplate. Moreover,

the growth of fat cells and inflammatory edema in the rigid

intraosseous compartment can increase pressure and com-

press vessels and further decrease blood flow (83,84).

Therefore, we speculated that inhibition of inflammatory

mediators and adipogenesis of vertebral bone marrow stromal

cells (vBMSCs) may retard the progression of IVDD. Our

study showed that fullerol suppressed ROS and inflammatory

cytokine production under IL-1 b induction, inhibited the

adipogenic differentiation of vBMSCs in vitro and, therefore,

may prevent vertebral fatty marrow deposition and inflam-

matory responses during IVDD (85). Furthermore, it was

reported that the intravenously injected water-soluble

C60 could penetrate the blood–brain barrier (86). We thus

hypothesize that fullerol may also pass through the marrow

contact channels across the vertebral endplate to reach disc

tissue. If it is proved to be true, the local injection of fullerol

into vertebral bodies can be beneficial to both prevent

vertebral bone marrow inflammation and fatty degeneration

as well as directly prevent disc tissue degeneration. The

in vivo study is currently underway in our lab.

C60 and derivatives in radiculopathy treatment

IVDD can also cause spinal nerve root inflammation which is

in association with back pain. The ingrowth of nociceptive

neural fiber into deeper parts of the degenerative disc is

considered as one of the most widely accepted pathomechan-

isms related to chronic discogenic pain (87). As the IVDD

proceeds, disc inflammation may promote axonal growth

of afferent fibers from the dorsal root ganglia (DRG) (88) to

innervate the disc by secreting proinflammatory mediators.

The pain signal could be triggered as the neurons of the DRG

transmit the inflammatory signal through the spinal cord

to the pain centers of the brain (89). Thus, relieving the

inflammatory tension of the DRG would be of great

significance to treat low back pain caused by IVDD. In our

in vitro study, we revealed that fullerol treatment suppressed

the inflammatory responses of DRG and neuronal apoptosis

by decreasing the level of ROS and potentially enhancing

anti-oxidative enzyme expression (90). Also, Huang et al. (91)

Figure 4. The strategy to treat bone destruction with C60 and derivatives.
C60 and derivatives enhance osteogenesis by increasing osteogenic gene
expression, and suppress osteoclastogenesis through inhibition of
receptor activator of NFkB (RANK)-RANK ligand (RANKL) signaling
pathway by direct removal of ROS as well as suppressing the production
of proinflammatory cytokines.
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prepared a new C60 hybrid bearing thalidomide as a potential

double-action anti-inflammatory agent, and found it was

capable of simultaneous inhibition of LPS-induced NO and

TNF-a production. Thus, the C60 core coupled with functional

groups shows novel features to prevent inflammation. Taken

together, C60 and derivatives have great potentials to serve as

ROS scavenger and inflammation reliever for radiculopathy

and low back pain treatment.

Figure 5 shows the general strategy to treat IVDD,

vertebral bone marrow lesion and radiculopathy, with C60

and derivatives, against low back pain.

To summarize, C60 and derivatives showed promising

potentials for application in orthopaedic research (Table 1).

Toxicity of C60 and derivatives

The toxicity assessment of C60 and derivatives is an absolute

and obvious prerequisite for their potential use in biomedi-

cine, and a complete knowledge of the underlying mechan-

isms is necessary for designing an efficient therapeutic

strategy for their alleviation. Although C60 is a ‘‘free radical

scavenger’’, the delocalized � double bonds of the fullerene

cage can absorb energy from light to efficiently produce an

excited triplet state and, through energy and electron transfer

to molecular oxygen, produce both singlet molecular oxygen

and superoxide which may injure cells (92). The balance

between ROS scavenging and generation mediates its

cytoprotection or photo-cytotoxicity on cells. Also, C60 may

cause damage to the plasma and nuclear membranes as well

as cellular organelles due to the potentials to form aqueous

aggregates of C60 nanoparticles (nC60). Furthermore, the

preparation methods for aqueous C60 may also affect its

cytotoxicity caused by solvent residues (93). For example,

ROS have been detected in aqueous nC60(solvent/tetrahydrofuran

(THF)) preparations (94,95), and Zhang et al. (96) demon-

strated that nC60(solvent/THF) preparations contained oxidizing

agents (THF degradation products) that explained ROS

activity. Moreover, the introduced functional groups into the

C60 molecule may also yield cytotoxicity.

As has been reported, with 48 h exposure to C60, the LC50

for human dermal fibroblasts is 20 mg/L (97), while it drops

down to 2 mg/L for neuronal human astrocytes (95). It was

documented that a maximal dose (100mg/ml, about 88.7 mM)

of fullerol-induced cytotoxic injury on human endothelial

cells (98) and was cytotoxic to human lens epithelial cells at

concentrations higher than 20 mM (92). While Sayes et al.

(97) explored the differential cytotoxicity of water-soluble

fullerenes and reported that C60(OH)24 with inhibitory

property for aggregation significantly enhanced its biocom-

patibility toward both human dermal fibroblasts and liver

carcinoma cells compared with C60. In our group, we

performed both lactate dehydrogenase and WST-1 assays to

appraise fullerol’s cytotoxicity on mouse vBMSCs and human

NP cells. The results from the study indicated that 1 mM

fullerol had little cytotoxicity for up to 7 days of in vitro

culture, while 10 mM fullerol demonstrated statistically

significant cytotoxicity. It shows that the toxicity of C60 and

derivatives depends on the targeted cell and tissue types as

well as the administered compound doses.

Since C60 derivatives have been reported to be widely

distributed in all tissues (56), the toxicokinetics of these

compounds after in vivo administration deserve critical atten-

tion. It has been pointed out C60 and derivatives have long

biological half-life within the exposed animals (5). The

relatively long biological half-life raises concern about

bioaccumulation and long-term effects. Mori et al. (99)

revealed that orally administered C60 and C70 at a dose level

Table 1. Applications of C60 and derivatives in orthopaedic research.

Fullerene types Biomedical actions References

C60 Chondrogenesis promotion via working as polyanionic substance or concen-
trating polyanionic substances; cartilage degeneration prevention via free
radical scavenging potential and superlubricity property

(12,57)

Fullerol, C60, C60[C(PO3H2)2]2,
C60(OH)16AMBP

Bone destruction treatment via osteogenesis enhancing, osteoclastic suppression
and inflammation inhibition, due to ROS scavenging potential, or osteopor-
osis prevention by conjugating the fullerene core with traditional bone
promotion agents through targeting therapy strategy

(13,67,69–70)

Fullerol IVDD prevention via matrix degradation inhibition, water and proteoglycan
content promotion, as well as ectopic bone formation prevention in disc tissue

Manuscript under review

Fullerol Vertebral bone marrow lesion treatment via ROS and inflammatory cytokine
suppression, as well as adipogenesis prevention of vBMSCs

(85)

Fullerol Radiculopathy treatment via suppressing the inflammatory responses of DRG
and neuronal apoptosis by decreasing the level of ROS and potentially
enhancing anti-oxidative enzyme expression

(90)

Figure 5. The general strategy to treat IVDD, vertebral bone marrow
lesion and radiculopathy, with C60 and derivatives, against low back
pain. The ‘‘free radical sponge’’ C60 and derivatives suppress disc tissue
inflammation, promote disc tissue regeneration, prevent vertebral bone
marrow edema and fatty degeneration and inhibit DRG inflammatory
responses under high oxidative stress.
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of 2000 mg/kg did not cause toxicity to rats within 15-day

observation. Genotoxicity was not found either. In experiments

studying subchronic exposure to C60, administration of the

compounds for up to 24 weeks did not result in the formation of

either benign or malignant skin tumors in mice (100). However,

for critical safety sake, long-term evaluation of different

animals administered with different doses is highly required.

Furthermore, even though it was considered in general, the

acute oral, dermal and airway toxicity is low (5), the

administration routes should also be fully compared and

appraised.

Future directions

Growth factors, such as bone morphogenetic protein 2

(101,102), 4 (103,104), 6 (105,106), growth and differentia-

tion factor 5 (107,108), transforming growth factor-b
(109–112), insulin-like growth factor 1 (113,114) and plate-

let-derived growth factor (115,116), have been extensively

investigated and shown beneficial effects in orthopaedic

research. However, their applications were significantly

limited by the relatively short half-life of the factors due to

the enzymatic degradation under a biologically environmental

condition. As the therapeutic potentials of C60 have been

expanded by linking with a variety of functional moieties such

as peptides (117), oligonucleotides (118), porphyrins (119),

flavonoids (120), etc., we hypothesized that linking C60 with

growth factors is another way to develop its potential as a

therapeutic agent against musculoskeletal disorders. Right

now the biggest challenge is to screen out the most feasible

hydrophilic linkers which connect growth factors and C60 core

well and do not affect the beneficial effects of either side.

Nanotechnology, concerning C60 and derivatives, has

shown promising prospect due to the unique features of

these nanoparticles: the solubility and stability can be greatly

enhanced; the drug delivery targets, as well as the efficacy and

safety of the delivery strategy can be modified by coupling

the core with functional groups; feasibilities of continuous

and stable monitoring in situ; resistance to immunoreaction;

non-biodegradability (121). However, hypersensitivity, unex-

pected changes in pharmacokinetic behaviors, possible reac-

tions with tissues, as well as possible accumulation in the

body, need to be extensively investigated.

Conclusions

C60 and derivatives have shown successful applications

in intensive biomedical research due to their unparalleled

physical and chemical properties. The current research

hotspots are centered on compounds highly purifying, surface

modification with functional groups, linking with desirable

molecules for targeted or designated pharmacotherapy. For

further orthopaedic research, especially in vivo applications,

the pharmacokinetics and toxicology of these agents as local/

systemic administration need to be carefully determined.
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